重工机械网

登录

新超导电路设计或让量子处理器提速10倍!

2025-05-09 10:05:04888
来源:化工仪器网
  5月6日,美国麻省理工学院团队在《自然·通讯》杂志上展示了一种全新超导电路设计,该设计可让量子处理器速度提高10倍。这是目前量子系统中实现的最强非线性光物质耦合,有助于未来量子计算机运行更快、更稳定,并推动其实用化进程。
 
  量子计算机的潜力在于其模拟复杂分子结构或加速人工智能训练的能力,但实现这些应用的前提是量子处理器能以超高速完成计算并精准读取结果。传统量子系统的读取效率受限于光子与人工原子(存储量子信息的载体)之间的耦合强度。
 
  而MIT团队此次设计的超导电路将这一关键参数提升了10倍。这一突破意味着量子态的测量时间可缩短至几纳秒级别,同时显著降低误差率,使量子比特在有限寿命内完成更多计算与纠错循环。
 
  研究的核心创新在于一种名为“四分量耦合器”的新型量子耦合器。该设备通过电流注入增强量子比特与光信号的相互作用,创造出极强的非线性耦合效应。团队成员形象地比喻其作用:“就像为量子世界配备了一位高效翻译官,让光与物质之间的对话更加流畅。”
 
  实验中,研究人员将耦合器连接至芯片上的两个超导量子比特:一个被改造为谐振器(作为量子态读取器),另一个作为人工原子存储量子信息。当微波光照射系统时,谐振器频率随量子比特状态(“0”或“1”)变化,通过监测这一变化即可实现快速读取。测试结果显示,新设计的非线性耦合强度较此前技术高出一个数量级,读取速度与准确性均实现质的飞跃。
 
  从长远来看,这项技术为构建容错量子计算机奠定了重要基础。当前量子比特易受环境干扰导致信息丢失,而更强的耦合与更快的读取能力将大幅提升系统的纠错效率,推动量子计算向大规模、实用化方向发展。MIT团队自2019年起便专注于研发专用光子探测器以增强量子信息处理能力,此次成果被视为该领域的重大里程碑。
 
  MIT研究团队的突破不仅标志着量子硬件技术的关键跨越,更预示着人类距离解锁量子计算全部潜力的目标又近了一步。
 
  (资料参考来源:科技日报)

上一篇:清华大学集成电路学院王晓红团队在高频超级电容器研究方面取得新进展

下一篇:支持500+量子比特!我国第四代自主量子计算测控系统“本源天机4.0”发布

相关资讯:

分享到:

首页|导航|登录|关于本站|联系我们